Generic filters
Exact matches only
FS Logoi

Boston Metal: Pioneering Sustainable Solutions in Steel Manufacturing

MIT spinout Boston Metal is commercializing a new method for making steel and other metals, to help clean up the emissions-intensive industry. The technology is currently slated to reach commercial-scale in 2026.

von | 06.06.24

Logo Boston Metal

May 2024 | MIT spinout Boston Metal is commercializing a new method for making steel and other metals, to help clean up the emissions-intensive industry.

Steel is one of the most useful materials on the planet. A backbone of modern life, it’s used in skyscrapers, cars, airplanes, bridges, and more. The most common way it’s produced involves mining iron ore, reducing it in a blast furnace through the addition of coal, and then using an oxygen furnace to burn off excess carbon and other impurities. That’s why steel production accounts for around 7 to 9 percent of humanity’s greenhouse gas emissions worldwide.

Now Boston Metal is seeking to clean up the steelmaking industry using an electrochemical process called molten oxide electrolysis (MOE), which eliminates many steps in steelmaking and releases oxygen as its sole byproduct.

The company, which was founded by MIT Professor Emeritus Donald Sadoway, Professor Antoine Allanore, and James Yurko PhD ’01, is already using MOE to recover high-value metals from mining waste at its Brazilian subsidiary, Boston Metal do Brasil. That work is helping Boston Metal’s team deploy its technology at commercial scale and establish key partnerships with mining operators. It has also built a prototype MOE reactor to produce green steel at its headquarters in Woburn, Massachusetts.

And despite its name, Boston Metal has global ambitions. The company has raised more than $370 million to date from organizations across Europe, Asia, the Americas, and the Middle East, and its leaders expect to scale up rapidly to transform steel production in every corner of the world.

“There’s a worldwide recognition that we need to act rapidly, and that’s going to happen through technology solutions like this that can help us move away from incumbent technologies,” Boston Metal Chief Scientist and former MIT postdoc Guillaume Lambotte says. “More and more, climate change is a part of our lives, so the pressure is on everyone to act fast.”

 

A decades-long search

Since the 1980s, Sadoway had conducted research on the electrochemical process by which aluminum is produced. The focus of the research was to find a replacement for the consumable anode used in that process, which makes carbon dioxide as a by-product. During that work, he began to conceptualize a similar electrochemical process to make iron, the precursor to steel.

But it wasn’t until around 2012 that Sadoway and Allanore, then a postdoc at MIT, discovered an iron-chromium alloy that could serve as a cheap enough anode material to make the process commercially viable and produce oxygen as a byproduct. That’s when the pair partnered with James Yurko, a former student, to found Boston Metal.

“All of the fundamental studies and the initial technologies came out of MIT,” Lambotte says. “We spun out of research that was patented at MIT and licensed from MIT’s Technology Licensing Office.”

Lambotte joined the company shortly after Sadoway’s team published a 2013 paper in Nature describing the MOE platform.

“That’s when it went from the lab, with a coffee cup-sized experiment to prove the fundamentals and produce a few grams, to a company that can produce hundreds of kilograms, and soon, tons of metal,” Lambotte says.

 

About Boston Metal molten oxide electrolysis

Schema des MOE-Prozesses von Boston Metal

A schematic shows the process of making greener metal inside a large case. On top left, a pipe lets “Iron Ore” inside; “electrolytes” are represented as blue liquid with orange “molten iron” underneath. On bottom right of the case, a tap release the “liquid iron.” On top right, “Oxygen bubbles” are release from another pipe. Credits: MIT / Boston Metal

 

Boston Metal’s molten oxide electrolysis process takes place in modular MOE cells, each the size of a school bus. Iron ore rock is fed into the cell, which contains the cathode (the negative terminal of the MOE cell) and an anode immersed in a liquid electrolyte. The anode is inert, meaning it doesn’t dissolve in the electrolyte or take part in the reaction other than serving as the positive terminal. When electricity runs between the anode and cathode and the cell reaches around 1,600 degrees Celsius, the iron oxide bonds in the ore are split, producing pure liquid metal at the bottom that can be tapped. The byproduct of the reaction is oxygen, and the process doesn’t require water, hazardous chemicals, or precious-metal catalysts.

The production of each cell depends on the size of its current. Lambotte says with about 600,000 amps, each cell could produce up to 10 tons of metal every day. Steelmakers would license Boston Metal’s technology and deploy as many cells as needed to reach their production targets.

 

From Mining Waste Recovery to Clean Energy Metals Production

Boston Metal is already using MOE to help mining companies recover high-value metals from their mining waste, which usually needs to undergo costly treatment or storage. Lambotte says it could also be used to produce many other kinds of metals down the line, and Boston Metal was recently selected to negotiate grant funding to produce chromium metal — critical for a number of clean energy applications — in West Virginia.

“If you look around the world, a lot of the feedstocks for metal are oxides, and if it’s an oxide, then there’s a chance we can work with that feedstock,” Lambotte says. “There’s a lot of excitement because everyone needs a solution capable of decarbonizing the metal industry, so a lot of people are interested to understand where MOE fits in their own processes.”

 

Gigatons of potential

Boston Metal’s steel decarbonization technology is currently slated to reach commercial-scale in 2026, though its Brazil plant is already introducing the industry to MOE.

“I think it’s a window for the metal industry to get acquainted with MOE and see how it works,” Lambotte says. “You need people in the industry to grasp this technology. It’s where you form connections and how new technology spreads.”

The Brazilian plant runs on 100 percent renewable energy.

“We can be the beneficiary of this tremendous worldwide push to decarbonize the energy sector,” Lambotte says. “I think our approach goes hand in hand with that. Fully green steel requires green electricity, and I think what you’ll see is deployment of this technology where [clean electricity] is already readily available.”

Boston Metal’s team is excited about MOE’s application across the metals industry but is focused first and foremost on eliminating the gigatons of emissions from steel production.

“Steel produces around 10 percent of global emissions, so that is our north star,” Lambotte says. “Everyone is pledging carbon reductions, emissions reductions, and making net zero goals, so the steel industry is really looking hard for viable technology solutions. People are ready for new approaches.”

 

(Source: MIT/2024)

Jetzt Newsletter abonnieren

Brennstoff für Ihr Wissen, jede Woche in Ihrem Postfach.

Hier anmelden

Siemens collaborates with Samsung Foundry
Siemens collaborates with Samsung Foundry

July 2024 | Siemens Digital Industries Software announced that, in collaboration with Samsung Foundry, they have developed compelling new capabilities for the manufacture of multi-die packaged designs at advanced nodes and achieved a host of new product certifications for many of Siemens’ industry-leading IC design and verification technologies.

mehr lesen

Fachinformationen für Sie

Brenner mit niedrigem Stickoxidausstoß

Brenner mit niedrigem Stickoxidausstoß

Autor: Stefan Baur / Herbert Bauer / Vasile Jechiu
Themenbereich: Thermoprozesstechnik

Bei der Modernisierung und dem Neubau von Thermoprozessanlagen in Stahl- und Aluminiumwerken sind niedrige NOX und CO2- Emissionen ein Hauptanliegen. Der Artikel beschreibt die Entwicklung eines Konzeptes zur Reduzierung des Stickstoffausstoßes ...

Zum Produkt

Schmelzen von großen Stahlgussteilen im Induktionstiegelofen

Schmelzen von großen Stahlgussteilen im Induktionstiegelofen

Autor: Erwin Dötsch / Wolfgang Ertl
Themenbereich: Thermoprozesstechnik

Die voestalpine-Giesserei Gruppe betreibt in ihrem Stahl-Segment eine Gießerei zur Herstellung von schwerem Stahlguss mit einem Gewicht von 1 bis 200 t pro Gussteil. Die in der Gießerei benötigte Schmelze wird zu einem großen Teil aus dem auf ...

Zum Produkt

Auswirkungen zugelassener Toleranzen auf das Ergebnis beim Nitrieren

Auswirkungen zugelassener Toleranzen auf das Ergebnis beim Nitrieren

Autor: Karl-Michael Winter
Themenbereich: Thermoprozesstechnik

Nitrieren und Nitrocarburieren haben in den letzten Jahren eine immer größere Bedeutung in der Wärmebehandlung von Bauteilen erlangt. Während es noch vor wenigen Jahren üblich war, diese Prozesse mit fest eingestellten Temperaturen und ...

Zum Produkt