Generic filters
Exact matches only
FS Logoi

Ammonia: efficient hydrogen carrier and green steel enabler

Materials scientists of German research body Max-Planck-Institut für Nachhaltige Materialien GmbH have used ammonia as a hydrogen carrier and as a reductant for iron.

von | 13.02.25

The ammonia-based direct reduction offers a process shortcut elevating the separate ammonia cracking process into hydrogen and nitrogen. (© Max-Planck-Institut für Eisenforschung GmbH)
The ammonia-based direct reduction offers a process shortcut elevating the separate ammonia cracking process into hydrogen and nitrogen. (© Max-Planck-Institut für Eisenforschung GmbH)

When it comes to sustainability and green steel, everybody talks about hydrogen. But current means of storing and transporting hydrogen request high pressures and low temperatures, which are both energetically and economically costly. Ammonia is known to be a good hydrogen carrier. Dr. Yan Ma, group leader at MPIE and his colleagues show that ammonia can not only be used to carry hydrogen but also for the direct reduction of iron which makes ammonia a viable candidate to overcome the shortcomings of hydrogen.

Steel production is currently the biggest single cause of global warming, responsible for ca. 7% of global CO2 emissions. To cut these emissions, scientists and industry are intensively investigating hydrogen-based ironmaking approaches as sustainable pathways to replace carbon reductants. While the hydrogen-based direct reduction of iron ore is promising, researchers are facing one major challenge: to make the whole steel making process climate friendly, the used energy and hydrogen themselves should be produced in sustainable ways. But markets are lacking enough green hydrogen and current means of storing and transporting hydrogen request high pressures and low temperatures, which are both energetically and economically costly. Researchers of the Max-Planck-Institut für Nachhaltige Materialien GmbH tackled this challenge by using ammonia as a hydrogen carrier and as a reductant for iron. They compared the iron and steel produced with ammonia-based direct reduction with hydrogen-based direct reduction, analysed the characteristics of the novel process and costs and published their results in the journal Advanced Science.

Ammonia as direct reductant brings several advantages

An increasing amount of hydrogen is needed worldwide, but the storage and transport of hydrogen is tricky: it has to be either stored at very low temperatures or high pressures due to its low volumetric energy density. These means cost 30% of the embodied chemical energy hydrogen delivers. By contrast, ammonia is already traded worldwide with established logistics and is known to be an excellent hydrogen carrier with low liquefaction costs. “Our aim was to study whether ammonia can be directly used to reduce iron ores without cracking it into hydrogen and nitrogen. Avoiding this cracking process can reduce the overall costs by 18%. Moreover, we analysed how ammonia as reduction agent affects the properties of the reduced iron”, explains Yan Ma, first author of the publication. The scientists introduced ammonia in a laboratory-scale reactor where iron ores are reduced to so-called sponge iron.

Autocatalytic reduction of iron oxide by hydrogen released from ammonia cracking during the direct reduction process. (© T. You, Max-Planck-Institut für Eisenforschung GmbH)

Autocatalytic reduction of iron oxide by hydrogen released from ammonia cracking during the direct reduction process. (© T. You, Max-Planck-Institut für Nachhaltige Materialien GmbH)

 

During this process a thermogravimetry coupled with a mass spectrometry measured the weight and gas composition showing the reduction degree and the onset of ammonia decomposition. “The ammonia-based direct reduction proceeds through an autocatalytic reaction. We compared its kinetics with the hydrogen-based direct reduction. Both have similar characteristics and yield the same metallisation degree. In contrast to hydrogen-based reduction, nitrides form during cooling in ammonia, which could protect the sponge iron from corrosion and make it easier to handle”, explains Ma. The nitride phase can be completely dissolved and removed during the subsequent melting process, which is anyway requested for downstream processing. Moreover, the other product of ammonia decomposition, nitrogen, can act as a heat carrier in a shaft furnace to maintain the reaction temperature and enhance the efficiency for the reduction of iron ores.

Future steel industry deploying intermittent renewable energy mediated by green ammonia. (© T. You, Max-Planck-Institut für EisenforschungGmbH)

Future steel industry deploying intermittent renewable energy mediated by green ammonia. (© T. You, Max-Planck-Institut für Nachhaltige Materialien GmbH)

Outlook: synthesising green ammonia and tuning the iron reduction process

The ammonia-based direct reduction connects two of the most CO2 intensive industries, the steel and ammonia production, and paves the way to a sustainable transition together. Moreover, by using ammonia the logistic and energetic disadvantages of hydrogen are overcome and already existing furnace technologies, namely shaft and electric arc furnaces can be used with only slight modification. In the next step, the Max Planck team will test different process parameters like temperature or gas mixture to speed up the ammonia-based reduction process for a wide industrial application. The research is supported by an Advanced Grant of the European Research Council for Prof. Dierk Raabe, director at MPIE, and by a grant for Yan Ma financed by the Walter Benjamin Programme.

Author

Dr. Yan Ma (Copyright: Tristan Latest Thinking)

Dr. Yan Ma (Copyright: Tristan Latest Thinking)

Dr Yan Ma is the group leader of the interdepartmental research group ‘Sustainable Synthesis of Materials’ at research institution Max-Planck-Institut für Nachhaltige Materialien GmbH , Germany. He had received his Bachelor of Engineering (B.Eng.) in Metallurgical Engineering at the University of Science and Technology Beijing (USTB), China, in 2013.
Following that, he relocated to Aachen, Germany to achieve his Master’s degree at RWTH Aachen University, where he then also received the Doctor of Engineering (Dr.-Ing.). His thesis was on “Processes, microstructure, and mechanical properties of cold-rolled medium-Mn steel”, supervisor: Professor Dr.-Ing. Wolfgang Bleck.

Bildquelle, falls nicht im Bild oben angegeben:

Jetzt Newsletter abonnieren

Die ganze Welt der Metallurgie, immer in Ihrem Postfach.

Hier anmelden

KI für den Mittelstand: Software optimiert Industriekessel

KI für den Mittelstand: Software optimiert Industriekessel

IT-Experten eines Berliner Ingenieurbüros haben eine Software zur hoch präzisen Auslegung neuer sowie zur konstruktiven Optimierung bestehender Industriekessel und anderer Energietechnik-Systeme entwickelt. Künftig sollen sich damit auch für Mittelständler anderer Branchen komplexe Aufgabenstellungen mit starker wirtschaftlicher Wirkung drastisch effizienter umsetzen lassen.

mehr lesen
EcoVadis bestätigt die Leistungen von Swiss Steel Group in den Bereichen Umwelt und Soziales mit der Goldmedaille

EcoVadis bestätigt die Leistungen von Swiss Steel Group in den Bereichen Umwelt und Soziales mit der Goldmedaille

Swiss Steel Group, ein Anbieter von Speziallangstahl, wurde von EcoVadis, der renommierten Plattform für Nachhaltigkeitsbewertungen globaler Lieferketten, mit der Goldmedaille ausgezeichnet. Dies ist eine bedeutende Verbesserung gegenüber der Silbermedaille des Vorjahres und unterstreicht das konsequente Engagement des Unternehmens für umweltfreundliche Produktion, soziale Verantwortung und ethische Geschäftsführung

mehr lesen
Yoshiharu Ikeda Appointed new CEO of Primetals Technologies

Yoshiharu Ikeda Appointed new CEO of Primetals Technologies

Primetals Technologies announced on the 14th of March Yoshiharu Ikeda has been appointed to the position of Chief Executive Officer (CEO) of Primetals Technologies. He succeeds Satoru Iijima, who will continue to serve as a Director of the Board and Fellow Advisor. Yoshiharu Ikeda brings decades of experience in the metals industry to his role, and he has a track record of successful leadership in commercial and strategical roles as well as in the machinery business sector.

mehr lesen

Fachinformationen für Sie

Pusher reheat furnace combines increased production with a reduction in emissions

Pusher reheat furnace combines increased production with a reduction in emissions

Autor: James Feese/Felix Lisin, Gerrit Wohlschläger, Sandra Runde
Themenbereich: Thermoprozesstechnik

Operators of furnace systems in the steel industry are being confronted to an ever increasing degree with rising fuel prices and stringent environmental regulations – regardless of whether their system is an ageing one or brand new. The dream ...

Zum Produkt

Prozesswärme – 04 2019

Prozesswärme – 04 2019

Themenbereich: Thermoprozesstechnik

Die PROZESSWÄRME 4 ist die THERMPROCESS-Ausgabe – im großen Sonderteil enthält sie alles zur größten internationalen Messe der Branche. Interviews mit Branchenvertretern und eine Produktvorschau sind ebenso enthalten wie das Programm des ...

Zum Produkt

Prozesswärme – 08 2019

Prozesswärme – 08 2019

Themenbereich: Thermoprozesstechnik

In der PROZESSWÄRME 8 dreht sich alles um den Themenschwerpunkt Energie, Prozesse, Umwelt, denn die Steigerung von Nachhaltigkeit und Effizienz ist eine entscheidende Aufgabe der Industrie für die Zukunft. In den Fachbeiträgen geht es u. a. um ...

Zum Produkt