Generic filters
Exact matches only
FS Logoi

Mitigating aluminum industry emissions

A new report released by the European Commission's Joint Research Center (JRC) confirmed industrial carbon management (ICM) as a range of promising technologies for mitigating CO2 emissions, in particular in energy-intensive industries such as the aluminum industry. Some adjustments will be required to tailor the process to the specific sector.

von | 03.07.24

Zore, L., Decarbonisation Options for the Aluminium Industry, Publications Office of the European Union, Luxembourg, 2024, doi:10.2760/880, JRC136525
© European Commission, Joint Research Centre
Zore, L., Decarbonisation Options for the Aluminium Industry, Publications Office of the European Union, Luxembourg, 2024, doi:10.2760/880, JRC136525

July 2024 | A new report released by the European Commission’s Joint Research Center (JRC) confirmed industrial carbon management (ICM) as a range of promising technologies for mitigating CO2 emissions, in particular in energy-intensive industries such as the aluminum industry. Some adjustments will be required to tailor the process to the specific sector.

Aluminum is an essential material to manufacture many products, from cars to health care and aerospace components. To produce it more responsibly, it is key to find ways to decarbonize the production process. We will need to make use of the full range of low carbon technologies.

Decarbonizing the aluminum sector is challenging mostly because the production of alumina, the main ingredient in aluminum, is energy-intensive (the primary aluminum industry emitted 2.75 million metric tons of CO2 in 2022 in the EU, equivalent to 9.4 million newly registered passenger cars in the EU in 2022 driving 2,705 km each).

Therefore, reducing its emissions is essential for the industry to contribute to the EU’s 2030 and 2050 decarbonization targets.

The JRC’s report assesses four decarbonization options (inert anodes, hydrogen, electrification and ICM) and concludes that ICM is among the technologies at hand with the largest potential to mitigate emissions in this sector.

What is ICM?

ICM is a set of technologies that capture CO2 from industrial operations or energy production plants and safely transport and store it underground (carbon capture and storage—CCS). The CO2 can also be utilized as input for creating other products, such as chemicals and materials (carbon capture and utilization—CCU). Finally, the CO2 can be removed from the atmosphere, where permanent storage involves biogenic or atmospheric CO2.

In the U.S., ICM has mostly been used in the oil and gas industry as a way to obtain a CO2 stream for enhanced oil recovery (EOR—a process where CO2 is pumped into an oilfield in order to enhance the oil recovery). However, there has been an increasing focus on applying ICM as a climate-mitigation tool for managing and storing carbon emissions to support the decarbonization of heavy industries, such as the aluminum one.

In the aluminum sector, ICM could be one of the feasible decarbonization solutions, especially for facilities that: have access to cost-effective fossil fuels, lack access to affordable renewable energy sources, are still operational, have long decommissioning horizons, and have available CO2 transport and storage infrastructure.

ICM application in the aluminum sector

ICM technology in primary aluminum production can be first used in the fossil fuel-based alumina refining process, followed by the smelting process, where emissions stem from carbon anode consumption. To date, the most advanced technology uses a solvent to absorb CO2 emissions from flue gas (the exhaust gas of combustion at power plants).

The captured CO2 can then be transported through pipelines, ships, trains, and trucks. While this practice is well established in the oil and gas sector, especially in the U.S., in a European context the aluminum industry would have to join forces with other industries emitting significant CO2 volumes. The CO2 emissions from the aluminum industry in the EU are about 30 and 100 times smaller than in the cement and steel industry, respectively.

Finally, the transported CO2 is injected deep underground into porous rock layers, typically in deep saline formations or depleted oil and gas reservoirs, with an impermeable layer to prevent leakages. This is a tried-and-tested method, both from the oil and gas industry but also in the Sleipner and Snøhvit CCS projects in Norway that have been operational for almost 30 years.

Main barriers

One of the main barriers to the widespread implementation of ICM is the high initial investment required, as well as the high operating cost. This could potentially be minimized or offset if the captured carbon is integrated into a value chain that generates revenue or through mechanisms such as the EU Emissions Trading System (ETS), which sets the CO2 price.

The cost of capturing carbon varies greatly depending on the concentration of CO2 at the emission source and the technology used to capture it. It can range from approximately €15 per metric ton of CO2 for high-concentration emissions to over €100 per metric ton for low-concentration sources.

In aluminum smelters, where the CO2 concentration is relatively low (about 1%–1.5%), the cost of carbon capture is high. To reduce this cost, smelters may need to implement measures such as redesigning electrolytic pots to prevent carbon emissions and compressing flue gas before capture, although this also requires investments. In alumina refineries, CO2 concentration in flue gas is higher, thus implementing carbon capture would in principle be economically more favorable.

Alternative decarbonization technologies

Inert anodes could replace carbon anodes, eliminating the need to use carbon as a reductant, and thus, practically eliminating almost all emissions from the smelting process and at the same time increasing smelters’ efficiency by 25%. This is why they are considered potential game-changers in the aluminum production.

Hydrogen can also be used to offset emissions from fuel burning in high-temperature processes. However, in order to be an effective decarbonization option, it should be produced from renewable energy sources.

The electrification of low and mid-temperature applications is also viable, but its cost-effectiveness is dependent on the respective costs of electricity and carbon.

More information

Zore, L., Decarbonisation Options for the Aluminium Industry, Publications Office of the European Union, Luxembourg, 2024, doi:10.2760/880, JRC136525.

 

(Source: European Commission, Joint Research Centre)

Jetzt Newsletter abonnieren

Die ganze Welt der Metallurgie, immer in Ihrem Postfach.

Hier anmelden

Power-to-Heat technology for sustainable industrial processes
Power-to-Heat technology for sustainable industrial processes

In view of the urgent necessity to switch from conventional technologies to CO2 neutral and green energy sources, OTTO JUNKER SOLUTIONS has developed an innovative Power-to-Heat system which allows a sustainable and efficient process heat production across all branches of industry.

mehr lesen
Schmiedewerke Gröditz GmbH weiht hochmodernen Schmiedeofen ein
Schmiedewerke Gröditz GmbH weiht hochmodernen Schmiedeofen ein

Die Schmiedewerke Gröditz GmbH hat einen neuen hochmodernen Schmiedeofen offiziell in Betrieb genommen und damit einen wichtigen Schritt auf dem Weg zur klimaneutralen Stahlproduktion bis 2039 getan: Denn der Ofen ist für den zukünftigen Betrieb mit grünem Wasserstoff ausgelegt. Zur Einweihung drückte der sächsische Ministerpräsident Michael Kretschmer gemeinsam mit Dr. Alexander Becker, CEO der GMH Gruppe, Dr. Anne-Marie Großmann, CDO und Gesellschafterin der GMH Gruppe, Dr. Jens Overrath, COO der GMH Gruppe, und Hanka Snatkin, Plant Director der Schmiedewerke Gröditz GmbH, symbolisch auf den „grünen Knopf“.

mehr lesen

Fachinformationen für Sie

Brenner mit niedrigem Stickoxidausstoß

Brenner mit niedrigem Stickoxidausstoß

Autor: Stefan Baur / Herbert Bauer / Vasile Jechiu
Themenbereich: Thermoprozesstechnik

Bei der Modernisierung und dem Neubau von Thermoprozessanlagen in Stahl- und Aluminiumwerken sind niedrige NOX und CO2- Emissionen ein Hauptanliegen. Der Artikel beschreibt die Entwicklung eines Konzeptes zur Reduzierung des Stickstoffausstoßes ...

Zum Produkt

Schmelzen von großen Stahlgussteilen im Induktionstiegelofen

Schmelzen von großen Stahlgussteilen im Induktionstiegelofen

Autor: Erwin Dötsch / Wolfgang Ertl
Themenbereich: Thermoprozesstechnik

Die voestalpine-Giesserei Gruppe betreibt in ihrem Stahl-Segment eine Gießerei zur Herstellung von schwerem Stahlguss mit einem Gewicht von 1 bis 200 t pro Gussteil. Die in der Gießerei benötigte Schmelze wird zu einem großen Teil aus dem auf ...

Zum Produkt

Auswirkungen zugelassener Toleranzen auf das Ergebnis beim Nitrieren

Auswirkungen zugelassener Toleranzen auf das Ergebnis beim Nitrieren

Autor: Karl-Michael Winter
Themenbereich: Thermoprozesstechnik

Nitrieren und Nitrocarburieren haben in den letzten Jahren eine immer größere Bedeutung in der Wärmebehandlung von Bauteilen erlangt. Während es noch vor wenigen Jahren üblich war, diese Prozesse mit fest eingestellten Temperaturen und ...

Zum Produkt